Solving the Richardson equations close to the critical points

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A subspace shift technique for solving close-to-critical nonsymmetric algebraic Riccati equations

The worst situation in computing the minimal nonnegative solution X∗ of a nonsymmetric algebraic Riccati equation R(X) = 0 associated with an M-matrix occurs when the derivative of R at X∗ is near to a singular matrix. When the derivative of R at X∗ is singular, the problem is ill-conditioned and the convergence of the algorithms based on matrix iterations is slow; however, there exist some tec...

متن کامل

the effect of using critical discourse analytical tools on the improvement of the learners level of critical thinking in reading comprehension

?it is of utmost priority for an experienced teacher to train the mind of the students, and enable them to think critically and correctly. the most important question here is that how to develop such a crucial ability? this study examines a new way to the development of critical thinking utilizing critical discourse analytical tools. to attain this goal, two classes of senior english la...

Monodromy problem for the degenerate critical points

For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...

متن کامل

USING FRAMES OF SUBSPACES IN GALERKIN AND RICHARDSON METHODS FOR SOLVING OPERATOR EQUATIONS

‎In this paper‎, ‎two iterative methods are constructed to solve the operator equation $ Lu=f $ where $L:Hrightarrow H $ is a bounded‎, ‎invertible and self-adjoint linear operator on a separable Hilbert space $ H $‎. ‎ By using the concept of frames of subspaces‎, ‎which is a generalization of frame theory‎, ‎we design some  algorithms based on Galerkin and Richardson methods‎, ‎and then we in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 2006

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/39/37/002